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Abstract 

A new two-dimensional Bloch-wave method is devel- 
oped for dynamical reflection high-energy electron 
diffraction (RHEED) calculations. In this two-dimen- 
sional Bloch-wave analysis, the traverse energy and the 
wave field for each Bloch wave are calculated by a step- 
by-step R-matrix method. The accuracy of the method 
is critically examined in comparison with Ichimiya's 
method on the experimental rocking curve of an 
Si(001)-2 x 1 surface. It is demonstrated that two- 
dimensional Bloch-wave analysis can be used to 
elucidate the mechanism causing the peaks in rocking 
curves. 

1. Introduction 

Because of its surface sensitivity, RHEED has become a 
powerful tool for studies of adsorbed overlayers and 
reconstructed surfaces. After the discovery of RHEED 
intensity oscillations by Harris et al. (1981), it is well 
established that the specular-beam intensity for the 
layer-by-layer growth oscillates with a period corre- 
sponding to the deposition of monolayer (Neave et al., 
1983; Joyce et al., 1986) or bilayer (Sakamoto et al., 
1989; Ohtani et al., 1992; Mitsuishi et al., 1995). Of 
considerable importance to the development of mole- 
cular-beam epitaxy (MBE) has been application of 
RHEED as in situ surface-structure analysis. Recently, 
an energy-filtered RHEED apparatus (Horio, 1996) has 
been constructed to determine the more precise surface 
structure from elastically scattered electrons. In addi- 
tion, secondary electrons, Auger electrons (Horio & 
Ichimiya, 1985) and characteristic X-rays (Mitchell et 
al., 1977) emitted from the surface during RHEED 
experiments give information on the surface recon- 
struction or adsorption atoms. As for the analysis, the 
dynamical calculation must be used for relating the 
diffraction intensities to the surface structures. Early 
works of this kind were based on the use of Bethe's 
n-beam dynamical theory of electron diffraction 
(Miyake et al., 1954; Collela, 1972) because the Bloch 
waves offer the site information for a different locali- 
zation. Hence, this treatment enables diffraction 
phenomena such as reflection anomalies to be under- 
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stood in a qualitative sense. In working with this, it is 
assumed that the crystal potential is a three-dimen- 
sional periodic function of the position. Since the 
period of the crystal potential field ceases at the crystal- 
vacuum interface plane, it is not completely satisfactory 
when the surface potential scattering is non-negligible. 
Furthermore, evanescent waves cannot be taken into 
account. In principle, a proper method for incorpor- 
ating the non-periodic variation of the potential in the 
surface-normal direction is the layer-by-layer method, 
using two-dimensional periodicity. In fact, most recently 
published calculations (Maksym & Beeby, 1981; Ichi- 
miya, 1983; Zhao et al., 1988) have been performed by 
using this method except for Peng & Cowley (1986). 
The connection between rocking curve and the total 
wave field are discussed in detail using Bloch-wave and 
multislice formalisms (Ma & Marks, 1989, 1990, 1991; 
Wang, 1989). Spence & Kim (1987) considered possible 
application of resonance scattering to adatom-site 
determination. However, they do not take advantage of 
the site information on the localization of each two- 
dimensional Bloch wave and on their traverse energy 
like Bethe's eigenvalue method positively, while it has 
been successful in transmission electron microscopy 
(TEM) (Fujimoto, 1978; Kambe et aL, 1974; Kambe, 
1982). 

In this paper, the two-dimensional Bloch-wave 
theory is established in §2 for the dynamical RHEED 
calculations. The key is to calculate the traverse energy 
for each two-dimensional Bloch wave, its forward wave 
and backward wave. Since the rocking curve has only 
one main peak, an Si(001)-2 x 1 surface is selected 
to illustrate how the peak arising in a rocking curve 
is interpreted by the two-dimensional Bloch-wave 
analysis. The rocking curve is compared with Ichimiya's 
method on the experimental rocking curve and it is 
demonstrated that the two-dimensional Bloch-wave 
analysis is available for elucidation of the origin of the 
peaks in §3. Finally, a brief summary is given in ~4. 

2. A generalized two-dimensional Bloch theory 

The Schr6dinger equation for electrons interacting with 
a crystal potential is written as 
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EqJ - [ - ( h 2 / 2 m ) V  z - eV]qd, (1) 

where E is the energy of incident electrons. The z 
coordinate is taken parallel to the zone axis. It should 
be mentioned that for high-energy electrons the rela- 
tivistic effect is not so far from negligible. For such 
electrons, the Schr6dinger equation with relativistically 
corrected mass and wavelength is applicable for the 
straight-forward approximation case (Fujiwara, 1961; 
Watanabe et al., 1996). 

Now, a thick specimen is divided into thin slices, in 
which a crystal potential is constant in the z direction. 
In order to obtain information on the traverse energy 
for each two-dimensional Bloch wave in a slice, the 
wave function is written by the method of separation of 
variables, 

qJ = b(p)Z(z) ,  (2) 

with r = Co, z). Substituting this trial solution (2) into 
(1) and dividing by bCo)Z(z) gives 

h2 02 (eV + E) b b - Z = - X ,  
2m 3 ~  2m 3z 2 

X be ing  a constant .  

[llOl 10011 

[~TOl 

-0.2 

m -0.4 

-0.6 

L 
- -  (0,0) potential SI(001) potential  

-0.8 

-1 I I I 1 1 

0 5 10 15 20 25 

Z (au) 

Fig. 1. A side view of the (llO) plane and the real part  of the potential 
component  Vt~. 

Thus the equation separates into two forms, 

h2 32 (eV + E)}b = - X b  (3) 
2m 3p 2 

and 

h 2 0 2 Z  
- - - -  XZ. (4) 

2m 3z 2 

- -  p r e s e n t  m e t h o d  . . . . .  E x p e r i m e n t  (2  x 1 ) 

• Ichimiya 

0.7 J l l I 

0.6 
(01) (004) 

~ ,  0 .5  

-~ 0.4 

"~ 0 .3  

0.2 

/ 

0.1 

0 
0 5 10 15 2 0  2 5  3 0  

glancing angle [ m r a d ]  

Fig. 2. R o c k i n g  curves  o f  00 rod  beam at [ ] 10 ]  i nc i dence  o f  S i ( 0 0 1 ) -  
2 x 1. Dashed line: experimental  data, solid line: calculated with 
the present method. Circles: calculated with Ichimiya's method. 
The arrows denote the position of the (004) primary Bragg 
condition and the (01) vacuum threshold condition. 
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Fig. 3. Traverse energies for each Bloch wave at a glancing angle of 
3.5 mrad. 
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Using the two-dimensional Fourier expansion of b(p), 
the differential equation (3) at the ith slice is trans- 
formed into the jth set of eigenvalue equations for 
C'g,4(z ) and ~.~: 

2 i (hZ/2m)(kll +gll) C'g,,,/ - e ~-, V,,,-¢,C~,4 -- ( E -  i , )~j)C~,~,j, 

(5) 

where k = (kll, kz) and gll are the incident wave vector 
and the two-dimensional reciprocal-lattice vectors, 
respectively, and 

V(r) = ~ Vg,, (Z) exp{i(gll • p)}, 
g l l  

_ _  i • with Vg, (z) -- V~, In the ith slice. 
In matrix form, 

Q i  C~ : i i • )~/C~. .  (6) 

The eigenvalue ~,~., referred to as the traverse energy, 
and the associated elgenvectors" C~.~,.j can. be obtained by 
solving the eigensystem (6). The two-dimensional Bloch 
waves are given by these eigenvectors and eigenvalues. 
A similar treatment can be seen in an earlier work for 
the TEM case, where the eigenvalue of E--~.  corre- 
sponds to the 'transverse' energy parallel to the surface 
(Kambe et al., 1974). For a given eigenvalue ~.~, equation 
(4) can be analytically solved. Thus, the total wave 
function at the ith slice can be written as 

tPi(p, z) = Y~ ot~. y~ C~, 4 exp[i(2m3.~/h2)l/2z] 
J gll 

× exp[i(kll + gll)" P] 

+ ~ ~ Y~ C~,,4 exp[-i(2m3.~/h2)l/2z] 
J g, 

x exp[i(kll + gll)" P], (7) 

where (2m~.~/h2)I/2= (i +irli. The excitation ampli- 
tudes ct~ and fl~ can be determined from the boundary 
conditions. In the matrix notation, the column vector @, 
composed of the wave function and its derivative is 
given by 

1 { ~ i  ~'' } 

[ " 1 
= {q, , . j }  {ci,, .;} 

{i(2m)t}/h2) 1/2cg,,4} {-i(2m~.}/h2) 1/2q,,JI 
x [ 7,(z) 0 

0 ~ ( z ) ] [  (~') (E) ] 
i , .  

( E )  ' 

where ),~ and 71 are diagonal matrices with ~,,,, m = 
exp[i(2m~.i/h2)X/2z] and g~,m = exp[--i(2m)~/h~)~/2Z], 

respectively. The result is similar to the general dyna- 
mical theory (Peng & Whelan, 1990a,b; Peng et al., 
1996a,b,c). The column vectors ~ at the top and 
bottom of the ith slice are connected with the so-called 
transfer matrix M~ (2N × 2N) as 

*~(zl) = C~. F/(zl){C,. F,(z~)} -l*,(z~) 

--- C ,  " I" i (Z I - -  z b )  • ( C i )  - 1 .  ~l},(Z b) 

-- M~. ~/(z~). (9) 

This matrix representation is formally equivalent to 
those in other R H E E D  methods but differs in the 
treatment of the relevant matrices• For a thick slab 
composed of an assembly of thin slices, equation (9) is 
generalized to give 

II}l(Ztl) = M I * x ( Z l  b) - -  H Mil l}n(Zbn)  - -  M ~ n ( Z b ) ,  (10) 
i 

with 

At the slab top (z = 0), ~0 including the incident and 
reflected waves is given by 

~ o = (  {(~°3'"'° + r'")} ) (11) 
{i(kg± q93g,.o - kg I rg,, )} ' 

where k 2g~ = ( 2 m / h 2 ) E - ( k l l  + g l )  2 and r are the 
reflection coefficients. ~h at the Islab botto~ (z--Zb)  
has the form 

= ( {tg,, exp(ikg± • Zb)} 
{ikg± tg, exp(ikg± • Zb)} ) '  (12) 

¢P b 

with the transmission coefficients t . .  Hence, substi- 
tuting equations (11) and (12) into ({b), 

• 0 = M .  ~b" (13) 
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Fig. 5. Traverse energies for each Bioch wave at 15 mrad. 
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Fig. 6. Wave fields for each Bloch wave and the total wave field at 15 mrad. 
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When the scattering matrix includes evanescent waves, 
the M matrix diverges quickly. In order to avoid this 
divergence, the R-matrix scheme (Light & Walker, 
1976) has been introduced. The R matrix R i is defined 
here so as to relate the ~, (z)  vector and Oi(z ) at the ith 
slice, so that 

~i(zl)  -- Ri " ~i(zl) .  (14) 

From the boundary condition at the bottom [equation 
(12)], R,, is given by 

R , ,  = ( i K  . 4 2  - ~ 2 ) - '  " (q~2l - -  i K  • 4 , )  ( 1 5 )  

with the diagonal matrix K, = kg I. The following 
recursion relation for the R matrix R i is derived from 
(8) and (9): 

gi . , -  i + l  _ i + l  i 
: / [ q 2 1  + q22  " g i + l )  - 1  " q22  

/ i + l  i + l  ) - 1  -- ~,qal + qa2 " Ri+l " qil2} -1 
• -" i + l  _ i + l  ) - 1  i 

• I ( q l l  + q12 " Ri+l " qll 
i + l  _ i + l  )--1 i 

• q21}- -- ~,q21 + q22 " Ri+l (16) 

At the top, the reflection vector r is given from (11) by 
the incident wavevector (¢p3g,,0), 

r = { (q ' l l  + q12" R,) -~ + i(q~ + q~2" R,) -1" K } - '  

• {i(q12, + q~2" R 1 )  - 1 "  K 

- -  (qlll -Jr- q~2" RI) - I  } " (tP3gll.0) • (17) 

Now, to calculate wave fields at each slice, excitation 
amplitudes, i.e. a i and l/i, are evaluated using the same 
R i matrix successively, starting from the top to the 
bottom by using equations (8), (11), (14), (15), (16) and 
(17). 

3 .  R e s u l t s  a n d  d i s c u s s i o n  

To give a qualitative description, the calculations were 
made in a simple way, where the surface reconstruction 
was not considered and only three beams, 00, 01 and 0i 
rods, were taken into account. The accelerating voltage 
and the azimuthal angle were fixed at 40 kV and in the 
[110] direction in order to create the same condition as 
the experiment (Sakamoto et al., 1987). The reflectivity 
can be given as the perpendicular component of the 
reflected flux relative to the perpendicular component 
of the incident flux. Fig. 1 shows a side view of a (110) 
plane and the real part of the potential component V00. 
The surface region was made up of four layers having 
depth a/4 (a is the lattice constant) and the substrate of 
40 layers. Using this structure, a real potential Vg~(z) 
was calculated by a Fourier expansion of the electron 
scattering factors tabulated by Doyle & Turner (1968). 
Inelastic scattering was included as an imaginary 
potential taken as 10% of the real one and every slice 
thickness was set at a/120. 

The rocking curves calculated by the present method 
and lchimiya's method are shown in Fig. 2 together with 
the experimental result. The measured peak does not 
correspond to the primary Bragg condition but agrees 
with the vacuum threshold one. Comparison of the 
experimental and the theoretical results shows that the 
main peak is reproduced well even with the simple 
three-beam calculations, while there is little deviation in 
the glancing angle. The excellent agreement of the two 
theoretical results leads to the fact that the present 
method is on a level with Ichimiya's method in accuracy. 
The real part of the traverse energy for each Bloch 
wave and its forward, backward and total wave fields 
are shown for three glancing angles in Figs. 3-8, where 
the contour maps display the potential-energy profile 
on a (110) plane• The term 'wave field' means the 
spatial intensity distribution formed by the incident 
electrons. The wave fields are mapped by gray scale and 
normalized at the maximum value. It is well known in 
transmission electron microscopy that a traverse energy 
or a wave vector whose Bloch wave mainly concentrates 
on the atomic sites is on average larger than that 
located on the tunneling sites because the traverse 
energy increases through potential energy while the 
total energy of each Bloch wave is a constant and equal 
to an incident electron energy for elastic scattering. Fig. 
3 shows that only one Bloch wave at 3.5 mrad (branch 
1) can be transmitted into the crystal but branches 2 
and 3 are evanescent having negative traverse energy 
above the top surface of the crystal• In Fig. 4, the 
forward and backward wave fields for branch 1 
concentrate on the atomic sites, thus largely decaying 
away from the surface. The forward and backward wave 
fields for branches 2 and 3 are located on the tunneling 
sites. The total wave field is mainly contributed by the 
wave fields of branch 1. As shown in Fig. 5, the real 
parts of traverse energies for branches 2 and 3 become 

2.5 

t~ 
v 

2 
t-- 
G.I 
(D 
l , n  1 . 5  

i-- 
1 

0•5 
-0•5 0 0•5 1 1•5 z / a  

Fig• 7. Traverse energies for each Bioch wave at 26•5 mrad. 

- - b r a n c h  1 . . . . .  branch Z A branch 3 

i 
t ^&^  - "=& ~ & . : -  ".A &&& t=~ - . 6  ~ &.'- - .&  na, n 

gn - -  - -a&&= "nn=  °~=  '=&&o -- 

I I I I 

2 



458 

Ill(" 

m 

[110 

A TWO-DIMENSIONAL BLOCH-WAVE METHOD 

forward backward 

~ ,  , r  f = r . l =  I surface 

Branch 1 

Branch 2 

Branch 3 

" 7  ,2 4 ,  - 

total wave f ie ld 

surface 

Fig. 8. Wave fields for each Bloch wave and the total wave field at 26.5 mrad. 
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positive just above the top of the crystal surface at the 
peak angle (15 mrad)  and vary with thickness inside the 
crystal. This fact gives rise to the refraction variations, 
so that multilayers are stacked with small refraction 
layers and large refraction layers in turn. It is accord- 
ingly expected that the localization of Bloch waves 
occurs in the first several atomic layers parallel to the 
surface. In fact, the localization of backward Bloch 
waves for branch 2 arises mainly above the top surface 
and that for branch 3 on the tunneling site at the first 
and second layers (Fig. 6). The concept of the locali- 
zation has been introduced as a threshold condition 
(Maksym & Beeby, 1982; Mar ten  & Meyer-Ehmsen,  
1985; Peng et al., 1996b,c) and the localization on the 
tunneling sites at the peak position has been demon- 
strated in the work of Horio  & Ichimiya (1996) who 
made  calculations for an S i ( l l l )  surface. The peak in 
the rocking curve cannot  be identified as the pr imary 
Bragg peak because the periodicity of the wave fields 
associated with the 004 Bragg peak is not shown. It is 
also worth noting that such discussions cannot  be made  
by just the difference in total wave field. The real parts 
of the traverse energies and the wave fields associated 
with 26.5 mrad are also displayed in Figs. 7 and 8. The 
three kinds of positive traverse energies increase with 
the glancing angle, so that the forward wave field for 
each Bloch wave penetra tes  into a deeper  region and 
the intensity of the backward wave field is too weak to 
cause the localization of the wave fields. 

4. Summary 

A two-dimensional Bloch-wave method is developed 
for dynamical  R H E E D  calculation. The present  method 
brings about  the same level of the accuracy as Ichi- 
miya's  method in rocking-curve calculations. The two- 
dimensional Bloch-wave analysis has been introduced 
to clarify the nature of peaks arising in rocking curves. 
The key to a threshold peak is the emergence of a 
Bloch wave above the top surface of the crystal which 
does not have sufficient energy to escape into the 
deeper  region and is channeled through the topmost  
layers parallel to the surface. The present  interpretat ion 
may have general  validity for the complex rocking 
curve having many peaks. Of  course, our present  
calculations are insufficient to make  a quanti tat ive 
comparison with R H E E D  experiment.  Fur ther  studies 
are necessary to clarify the contributions of surface 
reconstruction under  convergent  calculations. 

We appreciate  valuable discussions with and useful 
comments  from Dr  K. Kambe.  
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